
Supporting niche formats 
and hardware in open 
source software and 
operating systems
Kieran Kunhya <kieran@kunhya.com> - @kierank_



Who am I?

▪ Work on Open Source Multimedia in both a personal and professional capacity: 
FFmpeg and x264 in particular.

▪ Also interested in reverse engineering of codecs and hardware

▪ Presentation in reverse chronological order for ease of understanding

▪ This presentation given in a personal capacity



Why FFmpeg?

▪ De-facto open source multimedia processing tool and library

▪ Many web browsers implement complex specifications like HTML and CSS

▪ Nothing comparable in multimedia

▪ Basis of video players such as VLC, browsers (Chrome + Firefox), Smart TVs etc

▪ Written in C, not in newfangled language of the week

▪ Widely supported across computer architectures

▪ Likely tens of decades or more of support

▪ Works on RPI, watch, other weird device



Standing on the Shoulders of Giants

▪ Kostya Shishkov and Paul Mahol

▪ Master codec reverse engineers

▪ Willingness to teach and help (in their own special way…)

▪ Both reverse engineered dozens of codecs

▪ Monumental impact on media playback



Why support niche formats

▪ Someday, someone might discover and want to play these formats.

▪ An impact now or long into the future

▪ Most of you in the room are that impact

▪ Quite a lot of multimedia low-hanging fruit is “done”, good way to stay familiar with 
concepts (entropy coding, DCT). 

▪ Something you can do over Easter/Christmas.

▪ Also work for new students



This ticket

▪ There are so many variants 
of MPEG-4, why are these 
ones not supported?

▪ Why are they 4:2:2 and 
4:4:4?

▪ Only 3 samples available, to 
this day no real-world 
samples found.



MPEG-4 Sstp (1)

▪ Spent a lot of time trawling the internet looking for recent copy of paid spec

▪ Common in industry but a big problem for independent developers.

▪ Eventually found it on some Chinese website

▪ Woah this is different

▪ Up to 12-bit data, 4:2:2, 4:4:4, RGB – none supported in existing MPEG-4 code

▪ > 16-bit coefficients (not supported in FFmpeg IDCT)

▪ Crazy DPCM mode with vertical block scanning

▪ Only one program on Windows, no ability to extract raw data



MPEG-4 Sstp (2)

▪ Entropy coding nice, either works or it 
doesn’t

▪ Used float IDCT to get to working picture

▪ No reference decoder, tweaked picture until it 
looked ok.

▪ Took another year to get round to boring 
work of implementing templated integer 
IDCT.

▪ Also tedious work to hack-in 10/12-bit into 
FFmpeg, not ideal method.



MPEG-4 Sstp (3)

▪ Was quite hard to verify DPCM blocks

▪ After a lot of digging online found 
conformance MPEG bitstreams, weird raw 
file format.

▪ Got to position where nearly all of image 
worked but some part looked weird.

▪ After even more digging found reference 
software. Typo found: -(x >> n) != ((-x) >> n)

▪ Might be some minor errors, probably IDCT 
precision problem, maybe > 32-bit 
intermediates?



This press release



Cineform

▪ Downloaded SMPTE VC-5 specification

▪ Some things similar but some things in real 
world completely different

▪ Hints that lowpass coefficients were raw, 
by luck one sample had quite a lot of flat 
colours.

▪ Helped identify region

▪ Lucky also this sample used the 
published codebook, though could have 
reverse engineered from binary decoder



Cineform (2)

▪ Continue reverse engineering 
tags, lots of people contributed 
samples.

▪ Aligned coefficient layout

▪ Simple and fast codec

▪ Eventually get to working 
decoder

▪ Some samples had more 
complicated structures, “3D-
transform” frames, interlaced, 
bayer.



Cineform (3)

▪ https://medium.com/@kierank_/reverse-
engineering-the-gopro-cineform-codec-
7411312bfe1c – 36k readers!

▪ Eventually led to Cineform being open-sourced 
by GoPro!

▪ Few missing pieces implemented by Google 
Summer of Code 2018 student

▪ Not integrated into FFmpeg yet



But what about Physical Media files come on

▪ One day someone will come across these and wonder how to read files

▪ Panasonic P2 and Sony SxS cards 

▪ PCI and PCI Express-based respectively

▪ Both common and widely used, precursors to modern NVMe storage

▪ Closed source Windows and Mac drivers, or proprietary readers.

▪ Likely won’t work in 100 years

▪ Linux driver will last, nothing comparable hardware support



Panasonic P2 (1)

▪ PCMCIA based solid stage storage 
introduced in 2004

▪ Modern PCI Express backwards 
compatible with legacy PCI

▪ Bought cheap card off eBay.



Panasonic P2 (2)

▪ Request source code for Linux on camera

▪ Dig through thousands of lines and find ancient 
Linux 2.4 driver.

▪ Go to parents house, find my high school PC 
from 2008 with legacy PCI slot.

▪ Will it work without official hardware?

▪ A lot of messing with CentOS and wow, it 
worked!

▪ Might have newer cameras with more 
reasonable driver:

▪ https://github.com/kierank/p2card



Sony SxS

▪ Also requested source code, no 
driver to be found 

▪ Instead looked into reverse 
engineering.

▪ Built rig to easily use card.

▪ Setup Windows XP QEMU to 
sniff memory mapped IO, how 
the driver is reading memory 
from the card.

▪ https://hakzsam.wordpress.com/
2015/02/21/471/



Sony SxS (2)

▪ At the time needed newest CPU with IOMMU

▪ Use “dd” to read block by block and see how the driver reads and writes. 
Change the block index, and continue

▪ Very basic by modern NVMe standards

▪ Request block, get an interrupt with buffer

▪ https://github.com/kierank/sxs-linux

▪ No working DMA yet so very slow

▪ Need time to get it into mainline Linux (Christmas?)



Conclusions

▪ Audio and Video codec reverse engineering is tending to completion

▪ Codecs are being reverse engineered at a faster rate than they are created

▪ This has remarkable historical consequences for media

▪ Both the fact that users can “store” their content on sites like YouTube

▪ Or that discovered media will be playable for decades

▪ That said there are still many proprietary storage formats out there

▪ May not be easily possible to use commodity reader and reverse engineer


