

Developing a High Level Preservation Strategy for Virtual Reality Artworks

Tom Ensom & Jack McConchie

No Time To Wait 3, BFI, London 23 October 2018

Supported by Carla Rapoport, Lumen Art Projects Ltd.

Introduction

- Moving from exploratory research to strategy for acquisition and preservation
- First stages of project have explored:
 - The core components of VR systems (software and hardware) and their relationships
 - Production and playback of 360 video VR works
 - Production and playback of real-time 3D VR works
 - Initial exploration of preservation strategies for both the above

VR System Overview: **Software**

Capture: Monoscopic 360 with dual fisheye lenses

Image credit: http://theta360.guide/plugin-guide/fisheye/

Capture: Stereoscopic 360 with multiple lenses

Image credit: https://www.mysterybox.us/blog/2017/1/31/shooting-360-vr-with-gopro-odyssey-and-google-jump-vr

Capture: Stereoscopic 360 with multiple lenses

Common file characteristics

Containers	MP4, MKV	
Aspect Ratio	Equirectangular 2:1	
Frame rates	Commonly 60 fps	
Resolution	4096 x 2048- equivalent to 1024 FOV	
Compression	H264, H265	

Equirectangular

Cubemap

Pyramid

Image credit: https://code.fb.com/virtual-reality/next-generation-video-encoding-techniques-for-360-video-and-vr/

Top bottom stereoscopic 360 equirectangular projection

Identifying string: "3dv" or "_tb"

examplemedia_3dv_.mp4

Left right stereoscopic 360 equirectangular projection

Identifying string: "3dh" or "_Ir"

examplemedia_3dh_.mp4

360 Audio: Production

360 Audio: Production

Audio encoding	WAV, AIFF, AAC	
Ambisonic "order" or number of channels	4, 9, 16	
Audio channel ordering	Furse-Malham, ACN	
Audio channel spherical normalisation	SN3D, maxN, N3D.	

360 Audio: Playback

- Direct sound
- Filtered sound through head delayed
- Diffracted sound around head delayed

Real-Time 3D: Production

- Assets created using various proprietary and open-source tools and brought together in an engine
- Assets typically portable with open file format potential in some cases:
 - **3D models**: meshes and materials
 - **Textures**: texture maps (raster images)
 - **Sounds**: Ogg Vorbis and WAV
- **gITF** as open standard for archiving?

3D Modelling: Meshes and UVs

UV Map

3D Modelling: Materials and Textures

Real-Time 3D: Production

- **Engines** typically non-portable and proprietary/licenced
- Engines integrate assets and engine features in scenes/levels and include:
 - Lighting
 - Material shaders
 - Physics
 - Visual or typed scripting
 - Sound engine
 - Plugins and extensions

Real-Time 3D: Playback

- Built as executable software package
- Usually consists of executable file(s) and packaged assets
- Can be executed in a specific technical environment which might include:
 - **VR Runtimes** e.g. SteamVR, Oculus Runtime, OpenXR, WebVR etc.
 - **Graphics API** e.g. DirectX, Metal, OpenGL, Vulkan etc.
 - Graphics Processing Unit (GPU) and driver

Vulkan is an open standard for cross-platform 3D graphics which succeeds OpenGL

Rendering Pipeline

VR Rendering Pipeline

Lens Distortion

- Lenses used in headset to achieve wide field of view at close range
- Distortion must be corrected for in the frames send to headset
- Usually carried out as post processing
- Process specified by VR runtime

Image credit: Christian Pötzsch <u>https://www.imgtec.com/blog/speeding-up-gpu-barrel-distortion-</u> <u>correction-in-mobile-vr/</u>

Timewarp & Spacewarp

- Predictive interpolation of frames
- Distorts previously generated frame based on movement of user and scene
- Low cost tricks to maintain high framerate and low latency
- Process specified by VR runtime

Image credit: Neo222 https://xinreality.com/wiki/Asynchronous_Spacewarp

An Open Standard for VR Runtimes?

- The Khronos Group is a consortium of industry partners who develop open standards for 3D graphics
- **OpenXR** is working group attempting to develop a VR runtime standard
- All the big players in the VR industry are involved
- Like gITF and Vulkan, could also benefit preservation efforts... if it is adopted

Image credit: Khronos Group https://www.khronos.org/openxr/

Next Steps: Exploring Preservation Strategies

	General	360 Video	Real-Time 3D
Migration	 Headset lens distortion algorithms 	 Moving between projection types Variability in players 	 How reliable are the open 3D asset standards Re-creating a 3D scene in different engines
Emulation	 Emulating VR runtimes 	 Emulating 360 video players 	 Paravirtualization and passthrough for real- time 3D VR
Documentation	 Field of view video capture Accounts of experience 	 Documenting projection type 	• 360 video capture

Contact

Tom Ensom tom.ensom@tate.org.uk @Tom_Ensom Jack McConchie jack.mcconchie@tate.org.uk @DataPotatoes

