Supporting niche formats and hardware in open source software and operating systems

Kieran Kunhya <kieran@kunhya.com> - @kierank_
Who am I?

- Work on Open Source Multimedia in both a personal and professional capacity: FFmpeg and x264 in particular.
- Also interested in reverse engineering of codecs and hardware
- Presentation in reverse chronological order for ease of understanding
- This presentation given in a personal capacity
Why FFmpeg?

▪ De-facto open source multimedia processing tool and library
 ▪ Many web browsers implement complex specifications like HTML and CSS
 ▪ Nothing comparable in multimedia
 ▪ Basis of video players such as VLC, browsers (Chrome + Firefox), Smart TVs etc

▪ Written in C, not in newfangled language of the week
 ▪ Widely supported across computer architectures
 ▪ Likely tens of decades or more of support
 ▪ Works on RPI, watch, other weird device
Standing on the Shoulders of Giants

- Kostya Shishkov and Paul Mahol
- Master codec reverse engineers
 - Willingness to teach and help (in their own special way…)
- Both reverse engineered dozens of codecs
 - Monumental impact on media playback
Why support niche formats

- Someday, someone might discover and want to play these formats.
 - An impact now or long into the future
 - Most of you in the room are that impact

- Quite a lot of multimedia low-hanging fruit is “done”, good way to stay familiar with concepts (entropy coding, DCT).
 - Something you can do over Easter/Christmas.
 - Also work for new students
This ticket

- There are so many variants of MPEG-4, why are these ones not supported?

- Why are they 4:2:2 and 4:4:4?

- Only 3 samples available, to this day no real-world samples found.

Support MPEG-4 Studio Profile

Reported by: cehoyos
Priority: wish
Version: git-master
Cc: kierank
Blocking:

Owned by: avcodec
Component: sstp
Keywords:
Blocked By:
Reproduced by developer: no

Analyzed by developer: no

A user provided three MPEG-4 Simple Studio Profile files that are not supported by FFmpeg.

23.98p SR Lite (4:2:2 @ 220 Mbps)

$ ffmpeg -i A003C002_SR_Lite_23.98p.mxf
ffmpeg version N-71321-g6fd300a Copyright (c) 2000-2015 the FFmpeg developers
built with gcc 4.7 (SUSE Linux)
configuration: --enable-gpl
libavutil 54. 22.100 / 54. 22.100
libavcodec 56. 34.100 / 56. 34.100
libavformat 56. 30.100 / 56. 30.100
libavdevice 56. 4.100 / 56. 4.100
libavfilter 5. 13.101 / 5. 13.101
libswscale 3. 1.101 / 3. 1.101
libswresample 1. 1.100 / 1. 1.100
MPEG-4 Sstp (1)

- Spent a lot of time trawling the internet looking for recent copy of paid spec
 - Common in industry but a big problem for independent developers.
 - Eventually found it on some Chinese website

- Woah this is different
 - Up to 12-bit data, 4:2:2, 4:4:4, RGB – none supported in existing MPEG-4 code
 - > 16-bit coefficients (not supported in FFmpeg IDCT)
 - Crazy DPCM mode with vertical block scanning

- Only one program on Windows, no ability to extract raw data
MPEG-4 Sstp (2)

- Entropy coding nice, either works or it doesn’t
- Used float IDCT to get to working picture
- No reference decoder, tweaked picture until it looked ok.
- Took another year to get round to boring work of implementing templated integer IDCT.
- Also tedious work to hack-in 10/12-bit into FFmpeg, not ideal method.
MPEG-4 Sstp (3)

- Was quite hard to verify DPCM blocks
- After a lot of digging online found conformance MPEG bitstreams, weird raw file format.
- Got to position where nearly all of image worked but some part looked weird.
- After even more digging found reference software. Typo found: \(-(x >> n) != ((-x) >> n)\)
- Might be some minor errors, probably IDCT precision problem, maybe > 32-bit intermediates?
GoPro® CineForm Codec Standardized by SMPTE® as the VC-5 Standard

SMPTE Standardizes GoPro CineForm Codec as the New Open Standard for Video Acquisition and Post Production

SAN MATEO, CA (June 6, 2014) – GoPro, maker of the Emmy® Award-winning HERO® camera and enabler of some of today’s most engaging professional video content, announced today that the core technology behind the GoPro CineForm Codec has been standardized by the Society of Motion Picture and Television Engineers® (SMPTE®) as the SMPTE ST 2073 VC-5 video compression standard – the new open codec standard for video acquisition and post production.
Cineform

- Downloaded SMPTE VC-5 specification
 - Some things similar but some things in real world completely different
- Hints that lowpass coefficients were raw, by luck one sample had quite a lot of flat colours.
 - Helped identify region
- Lucky also this sample used the published codebook, though could have reverse engineered from binary decoder
Cineform (2)

- Continue reverse engineering tags, lots of people contributed samples.
 - Aligned coefficient layout
 - Simple and fast codec
 - Eventually get to working decoder
- Some samples had more complicated structures, “3D-transform” frames, interlaced, bayer.
Cineform (3)

- https://medium.com/@kierank/reverse-engineering-the-gopro-cineform-codec-7411312bfe1c – 36k readers!

- Eventually led to Cineform being open-sourced by GoPro!

- Few missing pieces implemented by Google Summer of Code 2018 student
 - Not integrated into FFmpeg yet
But what about Physical Media files come on

- One day someone will come across these and wonder how to read files
- Panasonic P2 and Sony SxS cards
 - PCI and PCI Express-based respectively
 - Both common and widely used, precursors to modern NVMe storage
- Closed source Windows and Mac drivers, or proprietary readers.
 - Likely won’t work in 100 years
 - Linux driver will last, nothing comparable hardware support
Panasonic P2 (1)

- PCMCIA based solid stage storage introduced in 2004
- Modern PCI Express backwards compatible with legacy PCI
- Bought cheap card off eBay.
Panasonic P2 (2)

- Request source code for Linux on camera
 - Dig through thousands of lines and find ancient Linux 2.4 driver.
- Go to parents house, find my high school PC from 2008 with legacy PCI slot.
 - Will it work without official hardware?
- A lot of messing with CentOS and wow, it worked!
- Might have newer cameras with more reasonable driver:
 - https://github.com/kierank/p2card
Sony SxS

- Also requested source code, no driver to be found 😊
- Instead looked into reverse engineering.
- Built rig to easily use card.
- Setup Windows XP QEMU to sniff memory mapped IO, how the driver is reading memory from the card.
 - https://hakzsam.wordpress.com/2015/02/21/471/
Sony SxS (2)

- At the time needed newest CPU with IOMMU
- Use “dd” to read block by block and see how the driver reads and writes. Change the block index, and continue
 - Very basic by modern NVMe standards
 - Request block, get an interrupt with buffer
- https://github.com/kierank/sxs-linux
 - No working DMA yet so very slow
 - Need time to get it into mainline Linux (Christmas?)
Conclusions

- Audio and Video codec reverse engineering is tending to completion
 - Codecs are being reverse engineered at a faster rate than they are created
 - This has remarkable historical consequences for media
 - Both the fact that users can “store” their content on sites like YouTube
 - Or that discovered media will be playable for decades

- That said there are still many proprietary storage formats out there
 - May not be easily possible to use commodity reader and reverse engineer